biodiversidad
|
|
|
|
Si buscas
hosting web,
dominios web,
correos empresariales o
crear páginas web gratis,
ingresa a
PaginaMX
Una célula (del latín cellula, diminutivo de cellam, celda, cuarto pequeño) es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.[1] De este modo, puede clasificarse a los organismos vivos según el número que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores.
La teoría celular, propuesta en 1839 por Matthias Jakob Schleiden y Theodor Schwann, postula que todos los organismos están compuestos por células, y que todas las células derivan de otras precedentes. De este modo, todas las funciones vitales emanan de la maquinaria celular y de la interacción entre células adyacentes; además, la tenencia de la información genética, base de la herencia, en su ADN permite la transmisión de aquélla de generación en generación.[2]
La aparición del primer organismo vivo sobre la Tierra suele asociarse al nacimiento de la primera célula. Si bien existen muchas hipótesis que especulan cómo ocurrió, usualmente se describe que el proceso se inició gracias a la transformación de moléculas inorgánicas en orgánicas bajo unas condiciones ambientales adecuadas; tras esto, dichas biomoléculas se asociaron dando lugar a entes complejos capaces de autorreplicarse. Existen posibles evidencias fósiles de estructuras celulares en rocas datadas en torno a 4 o 3,5 miles de millones de años (giga-años o Ga.).[3] [4] Las evidencias de la presencia de vida basadas en desviaciones de proporciones isotópicas son anteriores (cinturón supracortical de Isua, 3,85 Ga.).[a]
Existen dos grandes tipos celulares: las procariotas (que comprenden las células de arqueas y bacterias) y las eucariotas (divididas tradicionalmente en animales y vegetales, si bien se incluyen además hongos y protistas, que también tienen células con propiedades características).
La célula procariota
Artículo principal: Célula procariota
Las células procariotas son pequeñas y menos complejas que las eucariotas. Contienen ribosomas pero carecen de sistemas de endomembranas (esto es, orgánulos delimitados por membranas biológicas, como puede ser el núcleo celular). Por ello poseen el material genético en el citosol. Sin embargo, existen excepciones: algunas bacterias fotosintéticas poseen sistemas de membranas internos.[20] También en el Filo Planctomycetes existen organismos como Pirellula que rodean su material genético mediante una membrana intracitoplasmática y Gemmata obscuriglobus que lo rodea con doble membrana. Ésta última posee además otros compartimentos internos de membrana, posiblemente conectados con la membrana externa del nucleoide y con la membrana nuclear, que no posee peptidoglucano.[21] [22] [23]
Por lo general podría decirse que los procariotas carecen de citoesqueleto. Sin embargo se ha observado que algunas bacterias, como Bacillus subtilis, poseen proteínas tales como MreB y mbl que actúan de un modo similar a la actina y son importantes en la morfología celular.[24] Fusinita van den Ent, en Nature, va más allá, afirmando que los citoesqueletos de actina y tubulina tienen origen procariótico.[25]
De gran diversidad, los procariotas sustentan un metabolismo extraordinariamente complejo, en algunos casos exclusivo de ciertos taxa, como algunos grupos de bacterias, lo que incide en su versatilidad ecológica.[10] Los procariotas se clasifican, según Carl Woese, en arqueas y bacterias
La célula eucariota
Artículo principal: Célula eucariota
Las células eucariotas son el exponente de la complejidad celular actual.[12] Presentan una estructura básica relativamente estable caracterizada por la presencia de distintos tipos de orgánulos intracitoplasmáticos especializados, entre los cuales destaca el núcleo, que alberga el material genético. Especialmente en los organismos pluricelulares, las células pueden alcanzar un alto grado de especialización. Dicha especialización o diferenciación es tal que, en algunos casos, compromete la propia viabilidad del tipo celular en aislamiento. Asi, por ejemplo, las neuronas dependen para su supervivencia de las células gliales.[10] Por otro lado, la estructura de la célula varía dependiendo de la situación taxonómica del ser vivo: de este modo, las células vegetales difieren de las animales, así como de las de los hongos. Por ejemplo, las células animales carecen de pared celular, son muy variables, no tiene plastos, puede tener vacuolas pero no son muy grandes y presentan centríolos (que son agregados de microtúbulos cilíndricos que contribuyen a la formación de los cilios y los flagelos y facilitan la división celular). Las células de los vegetales, por su lado, presentan una pared celular compuesta principalmente de celulosa), disponen de plastos como cloroplastos (orgánulo capaz de realizar la fotosíntesis), cromoplastos (orgánulos que acumulan pigmentos) o leucoplastos (orgánulos que acumulan el almidón fabricado en la fotosíntesis), poseen vacuolas de gran tamaño que acumulan sustancias de reserva o de desecho producidas por la célula y finalmente cuentan también con plasmodesmos, que son conexiones citoplasmáticas que permiten la circulación directa de las sustancias del citoplasma de una célula a otra, con continuidad de sus membranas plasmáticas.[35]
Bacteria
De Wikipedia, la enciclopedia libre
Las bacterias son microorganismos unicelulares que presentan un tamaño de algunos micrómetros de largo (entre 0,5 y 5 μm, por lo general) y diversas formas incluyendo esferas, barras y hélices. Las bacterias son procariotas y, por lo tanto, a diferencia de las células eucariotas (de animales, plantas, etc.), no tienen núcleo ni orgánulos internos. Generalmente poseen una pared celular compuesta de peptidoglicano. Muchas bacterias disponen de flagelos o de otros sistemas de desplazamiento y son móviles. Del estudio de las bacterias se encarga la bacteriología, una rama de la microbiología.
Las bacterias son los organismos más abundantes del planeta. Son ubicuas, encontrándose en todo hábitat de la tierra, creciendo en el suelo, en manantiales calientes y ácidos, en desechos radioactivos,[1] en las profundidades del mar y de la corteza terrestre. Algunas bacterias pueden incluso sobrevivir en las condiciones extremas del espacio exterior. Se estima que hay en torno a 40 millones de células bacterianas en un gramo de tierra y un millón de células bacterianas en un mililitro de agua dulce. En total, se calcula que hay aproximadamente 5×1030 bacterias en el mundo.[2]
Las bacterias son imprescindibles para el reciclaje de los elementos, pues muchos pasos importantes de los ciclos biogeoquímicos dependen de éstas. Como ejemplo cabe citar la fijación del nitrógeno atmosférico. Sin embargo, solamente la mitad de los filos conocidos de bacterias tienen especies que se pueden cultivar en el laboratorio,[3] por lo que una gran parte (se supone que cerca del 90%) de las especies de bacterias existentes todavía no ha sido descrita.
En el cuerpo humano hay aproximadamente diez veces tantas células bacterianas como células humanas, con una gran cantidad de bacterias en la piel y en el tracto digestivo.[4] Aunque el efecto protector del sistema inmune hace que la gran mayoría de estas bacterias sea inofensiva o beneficiosa, algunas bacterias patógenas pueden causar enfermedades infecciosas, incluyendo cólera, sífilis, lepra, tifus, difteria, escarlatina, etc. Las enfermedades bacterianas mortales más comunes son las infecciones respiratorias, con una mortalidad sólo para la tuberculosis de cerca de dos millones de personas al año.[5]
En todo el mundo se utilizan antibióticos para tratar las infecciones bacterianas. Los antibióticos son efectivos contra las bacterias ya que inhiben la formación de la pared celular o detienen otros procesos de su ciclo de vida. También se usan extensamente en la agricultura y la ganadería en ausencia de enfermedad, lo que ocasiona que se esté generalizando la resistencia de las bacterias a los antibióticos. En la industria, las bacterias son importantes en procesos tales como el tratamiento de aguas residuales, en la producción de queso, yogur, mantequilla, vinagre, etc., y en la fabricación de medicamentos y de otros productos químicos.[6]
Aunque el término bacteria incluía tradicionalmente a todos los procariotas, actualmente la taxonomía y la nomenclatura científica los divide en dos grupos. Estos dominios evolutivos se denominan Bacteria y Archaea (arqueas).[7] La división se justifica en las grandes diferencias que presentan ambos grupos a nivel bioquímico y en aspectos estructurales.
Virus
1. Introducción
(Del latín, ‘veneno’), entidades orgánicas compuestas tan sólo de material genético, rodeado por una envuelta protectora. El término virus se utilizó en la última década del siglo pasado para describir a los agentes causantes de enfermedades más pequeños que las bacterias. Carecen de vida independiente pero se pueden replicar en el interior de las células vivas, perjudicando en muchos casos a su huésped en este proceso. Los cientos de virus conocidos son causa de muchas enfermedades distintas en los seres humanos, animales, bacterias y plantas.
La existencia de los virus se estableció en 1892, cuando el científico ruso Dmitry I. Ivanovsky, descubrió unas partículas microscópicas, conocidas más tarde como el virus del mosaico del tabaco. En 1898 el botánico holandés Martinus W. Beijerinck denominó virus a estas partículas infecciosas. Pocos años más tarde, se descubrieron virus que crecían en bacterias, a los que se denominó bacteriófagos. En 1935, el bioquímico estadounidense Wendell Meredith Stanley cristalizó el virus del mosaico del tabaco, demostrando que estaba compuesto sólo del material genético llamado ácido ribonucleico (ARN) y de una envoltura proteica. En la década de 1940 el desarrollo del microscopio electrónico posibilitó la visualización de los virus por primera vez. Años después, el desarrollo de centrífugas de alta velocidadpermitió concentrarlos y purificarlos. El estudio de los virus animales alcanzó su culminación en la década de 1950, con el desarrollo de los métodos del cultivo de células, soporte de la replicación viral en el laboratorio. Después, se descubrieron numerosos virus, la mayoría de los cuales fueron analizados en las décadas de 1960 y 1970, con el fin de determinar sus características físicas y químicas.
Los virus son parásitos intracelulares submicroscópicos, compuestos por ARN o por ácido desoxirribonucleico (ADN) —nunca ambos— y una capa protectora de proteína o de proteína combinada con componentes lipídicos o glúcidos. En general, el ácido nucleico es una molécula única de hélice simple o doble; sin embargo, ciertos virus tienen el material genético segmentado en dos o más partes. La cubierta externa de proteína se llama cápsida y las subunidades que la componen, capsómeros. Se denomina nucleocápsida, al conjunto de todos los elementos anteriores. Algunos virus poseen una envuelta adicional que suelen adquirir cuando la nucleocápsida sale de la célula huésped. La partícula viral completa se llama virión. Los virus son parásitos intracelulares obligados, es decir: sólo se replican en células con metabolismo activo, y fuera de ellas se reducen a macromoléculas inertes.
El tamaño y forma de los virus son muy variables. Hay dos grupos estructurales básicos: isométricos, con forma de varilla o alargados, y virus complejos, con cabeza y cola (como algunos bacteriófagos). Los virus más pequeños son icosaédricos (polígonos de 20 lados) que miden entre 18 y 20 nanómetros de ancho (1 nanómetro = 1 millonésima parte de 1 milímetro). Los de mayor tamaño son los alargados; algunos miden varios micrómetros de longitud, pero no suelen medir más de 100 nanómetros de ancho. Así, los virus más largos tienen una anchura que está por debajo de los límitesde resolución del microscopio óptico, utilizado para estudiar bacterias y otros microorganismos.
Muchos virus con estructura helicoidal interna presentan envueltas externas (también llamadas cubiertas) compuestas de lipoproteínas, glicoproteínas, o ambas. Estos virus se asemejan a esferas, aunque pueden presentar formas variadas, y su tamaño oscila entre 60 y más de 300 nanómetros de diámetro. Los virus complejos, como algunos bacteriófagos, tienen cabeza y una cola tubular que se une a la bacteria huésped. Los poxvirus tienen forma de ladrillo y una composición compleja de proteínas. Sin embargo, estos últimos tipos de virus son excepciones y la mayoría tienen una forma simple.
3. Replicación
Los virus, al carecer de las enzimas y precursores metabólicos necesarios para su propia replicación, tienen que obtenerlos de la célula huésped que infectan. La replicación viral es un proceso que incluye varias síntesis separadas y el ensamblaje posterior de todos los componentes, para dar origen a nuevas partículas infecciosas. La replicación se inicia cuando el virus entra en la célula: las enzimas celulares eliminan la cubierta y el ADN o ARN viral se pone en contacto con los ribosomas, dirigiendo la síntesis de proteínas. El ácido nucleico del virus se autoduplica y, una vez que se sintetizan las subunidades proteicas que constituyen la cápsida, los componentes se ensamblan dando lugar a nuevos virus. Una única partícula viral puede originar una progenie de miles. Determinados virus se liberan destruyendo la célula infectada, y otros sin embargo salen de la célula sin destruirla por un proceso de exocitosis que aprovecha las propias membranas celulares. En algunos casos las infecciones son ‘silenciosas’, es decir, los virus se replican en el interior de la célula sin causar daño evidente.
Los virus que contienen ARN son sistemas replicativos únicos, ya que el ARN se autoduplica sin la intervención del ADN. En algunos casos, el ARN viral funciona como ARN mensajero, y se replica de forma indirecta utilizando el sistema ribosomal y los precursores metabólicos de la célula huésped. En otros, los virus llevan en la cubierta una enzima dependiente de ARN que dirige el proceso de síntesis. Otros virus de ARN, los retrovirus, pueden producir una enzima que sintetiza ADN a partir de ARN. El ADN formado actúa entonces como material genético viral.
Durante la infección, los bacteriófagos y los virus animales difieren en su interacción con la superficie de la célula huésped. Por ejemplo, en el ciclo del bacteriófago T7, que infecta a la bacteria Escherichia coli, no se producen las fases de adsorción ni de descapsidación. El virus se fija primero a la célula y, después, inyecta su ADN dentro de ella. Sin embargo, una vez que el ácido nucleico entra en la célula, los eventos básicos de la replicación viral son los mismos.
4. Los virus en la medicina
Los virus representan un reto importante para la ciencia médica en su combate contra las enfermedades infecciosas. Muchos virus causan enfermedades humanas de gran importancia y diversidad.
Entre las enfermedades virales se incluye el resfriado común, que afecta a millones de personas cada año. Otras enfermedades tienen graves consecuencias. Entre éstas se encuentra la rabia, las fiebres hemorrágicas, la encefalitis, la poliomielitis y la fiebre amarilla. Sin embargo, la mayoría de los virus causan enfermedades que sólo producen un intenso malestar, siempre que al paciente no se le presenten complicaciones serias. Algunos de éstos son la gripe, el sarampión, las paperas, la fiebre con calenturas (herpes simple), la varicela, los herpes (también conocidos como herpes zóster), enfermedades respiratorias, diarreas agudas, verrugas y la hepatitis. Otros agentes virales, como los causantes de la rubéola (el sarampión alemán) y los citomegalovirus, pueden provocar anomalías serias o abortos. El síndrome de inmunodeficiencia adquirida (SIDA), está causado por un retrovirus. Se conocen dos retrovirus ligados con ciertos cánceres humanos, y se sospecha de algunas formas de papilomavirus. Hay evidencias, cada vez mayores, de virus que podrían estar implicados en algunos tipos de cáncer, en enfermedades crónicas, como la esclerosis múltiple, y en otras enfermedades degenerativas. Algunos virus tardan mucho tiempo en originar síntomas, y producen las llamadas enfermedades víricas lentas, como la enfermedad de Creutzfeldt-Jacob y el kuru, en las que se destruye el cerebro gradualmente.
Todavía hoy se descubren virus responsables de enfermedades humanas importantes. La mayoría pueden aislarse e identificarse con los métodos actuales de laboratorio, aunque el proceso suele tardar varios días. Uno de ellos es el rotavirus que causa la gastroenteritis infantil.
Los virus se propagan pasando de una persona a otra, causando así nuevos casos de la enfermedad. Muchos de ellos, como los responsables de la gripe y el sarampión, se transmiten por vía respiratoria, debido a su difusión en las gotículas que las personas infectadas emiten al toser y estornudar. Otros, como los que causan diarrea, se propagan por la vía oral-fecal. En otros casos, la propagación se realiza a través de la picadura de insectos, como en el caso de la fiebre amarilla y de los arbovirus. Las enfermedades virales pueden ser endémicas (propias de una zona), que afectan a las personas susceptibles, o epidémicas, que aparecen en grandes oleadas y atacan a gran parte de la población. Un ejemplo de epidemia es la aparición de la gripe en todo el mundo, casi siempre, una vez al año.
Los tratamientos que existen contra las infecciones virales no suelen ser del todo satisfactorios, ya que la mayoría de las drogas que destruyen los virus también afectan a las células en las que se reproducen. La alfa-adamantanamina se utiliza en algunos países para tratar las infecciones respiratorias causadas por la gripe de tipo A y la isatin-beta-tiosemicarbazona, efectiva contra la viruela. Ciertas sustancias análogas a los precursores de los ácidos nucleicos, pueden ser útiles contra las infecciones graves por herpes.
Un agente antiviral prometedor es el interferón, que es una proteína no tóxica producida por algunas células animales infectadas con virus y que puede proteger a otros tipos de células contra tales infecciones. En la actualidad se está estudiando la eficacia de esta sustancia para combatir el cáncer. Hasta hace poco, estos estudios estaban limitados por su escasa disponibilidad, pero las nuevas técnicas de clonación del material genético, permiten obtener grandes cantidades de ésta proteína. En unos años se podrá saber si el interferón es realmente eficaz como agente antiviral.
El único medio efectivo para prevenir las infecciones virales es la utilización de vacunas. La vacunación contra la viruela a escala mundial en la década de 1970, erradicó esta enfermedad. Se han desarrollado muchas vacunas contra virus humanos y de otros animales. Entre las infecciones que padecen las personas se incluyen la del sarampión, rubéola, poliomielitis y gripe. La inmunización con una vacuna antiviral estimula el mecanismo autoinmune del organismo, el cual produce los anticuerpos que le protegerán cuando vuelva a ponerse en contacto con el mismo virus. Las vacunas contienen siempre virus alterados para que no puedan causar la enfermedad.
Descripción de la célula como unidad estructural y funcional de los seres vivos
Compartimentos
Las células son entes dinámicos, con un metabolismo celular interno de gran actividad cuya estructura es un flujo entre rutas anastomosadas. Un fenómeno observado en todos los tipos celulares es la compartimentalización, que consiste en una heterogeneidad que da lugar a entornos más o menos definidos (rodeados o no mediante membranas biológicas) en las cuales existe un microentorno que aglutina a los elementos implicados en una ruta biológica.[36] Esta compartimentalización alcanza su máximo exponente en las células eucariotas, las cuales están formadas por diferentes estructuras y orgánulos que desarrollan funciones específicas, lo que supone un método de especialización espacial y temporal.[1] No obstante, células más sencillas, como los procariotas, ya poseen especializaciones semejantes.[37]
Membrana plasmática y superficie celular
Artículo principal: Membrana plasmática
La composición de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentre, pero posee elementos comunes. Está compuesta por una doble capa de fosfolípidos, por proteínas unidas no covalentemente a esa bicapa, y por glúcidos unidos covalentemente a lípidos o proteínas. Generalmente, las moléculas más numerosas son las de lípidos; sin embargo, la proteínas, debido a su mayor masa molecular, representan aproximadamente el 50% de la masa de la membrana.[36]
Un modelo que explica el funcionamiento de la membrana plasmática es el modelo del mosaico fluido, de J. S. Singer y Garth Nicolson (1972), que desarrolla un concepto de unidad termodinámica basada en las interacciones hidrófobas entre moléculas y otro tipo de enlaces no covalentes.[38]
Dicha estructura de membrana sustenta un complejo mecanismo de transporte, que posibilita un fluido intercambio de masa y energía entre el entorno intracelular y el externo.[36] Además, la posibilidad de transporte e interacción entre moléculas de células aledañas o de una célula con su entorno faculta a éstas poder comunicarse químicamente, esto es, permite la señalización celular. Neurotransmisores, hormonas, mediadores químicos locales afectan a células concretas modificando el patrón de expresión génica mediante mecanismos de transducción de señal.[39]
Sobre la bicapa lipídica, independientemente de la presencia o no de una pared celular, existe una matriz que puede variar, de poco conspicua, como en los epitelios, a muy extensa, como en el tejido conjuntivo. Dicha matriz, denominada glucocalix (glicocáliz), rica en líquido tisular, glucoproteínas, proteoglicanos y fibras, también interviene en la generación de estructuras y funciones emergentes, derivadas de las interacciones célula-célula.[10]
Estructura y expresión génica
El ADN y sus distintos niveles de empaquetamiento.
Las células eucariotas poseen su material genético en, generalmente, un sólo núcleo celular, delimitado por una envoltura consistente en dos bicapas lipídicas atravesadas por numerosos poros nucleares y en continuidad con el retículo endoplasmático. En su interior, se encuentra el material genético, el ADN, observable, en las células en interfase, como cromatina de distribución heterogénea. A esta cromatina se encuentran asociadas multitud de proteínas, entre las cuales destacan las histonas, así como ARN, otro ácido nucleico.[40]
Dicho material genético se encuentra inmerso en una actividad continua de regulación de la expresión génica; las ARN polimerasas transcriben ARN mensajero continuamente, que, exportado al citosol, es traducido a proteína, de acuerdo a las necesidades fisiológicas. Asimismo, dependiendo del momento del ciclo celular, dicho ADN puede entrar en replicación, como paso previo a la mitosis.[32] No obstante, las células eucarióticas poseen material genético extranuclear: concretamente, en mitocondrias y plastos, si los hubiere; estos orgánulos conservan una independencia genética parcial del genoma nuclear.[41] [42]
Síntesis y degradación de macromoléculas
Dentro del citosol, esto es, la matriz acuosa que alberga a los orgánulos y demás estructuras celulares, se encuentran inmersos multitud de tipos de maquinaria de metabolismo celular: orgánulos, inclusiones, elementos del citoesqueleto, enzimas... De hecho, estas últimas corresponden al 20% de las enzimas totales de la célula.[10]
| |
© 2024 biodiversidad 1032914 |