biodiversidad
|
|
|
|
Si buscas
hosting web,
dominios web,
correos empresariales o
crear páginas web gratis,
ingresa a
PaginaMX
A.- Descripción de nutrición
La nutrición celular comprende el conjunto de procesos mediante los cuales las células intercambian materia y energía con su medio.
Las partículas sólidas que han ingresado en la célula por endocitosis están formadas por moléculas cuyos átomos están unidos entre sí por enlaces químicos. Las moléculas y los átomos constituyen la materia en enlaces químicos. En éstos queda retenida la energía.
Para que la materia y la energía puedan ser aprovechadas por la célula, es necesario que ésta rompa las moléculas de menor tamaño. Este proceso se llama digestión, y se produce por acción de las enzimas contenidas en los lisosomas.
Las partes útiles de la partícula pasan al citoplasma y se incorporan a él (asimilación). Las partes que no son útiles son eliminadas fuera de la célula (egestión).
Las sustancias asimiladas tienen distintos fines: la materia se usa para elaborar otras moléculas, para reponer partes destruidas de la estructura celular y para liberar energía; este último proceso se denomina respiración celular.
Mediante la función de nutrición, la célula obtiene la materia y la energía necesarias para fabricar su propia materia celular y para realizar sus actividades vitales. Existen dos tipos de nutrición celular: la nutrición autótotrofa y la nutrición heterótrofa.
Los seres autótrofos (a veces llamados productores) son organismos capaces de sintetizar todas las sustancias esenciales para su metabolismo a partir de sustancias inorgánicas, de manera que para su nutrición no necesitan de otros seres vivos. El término autótrofo procede del griego y significa "que se alimenta por sí mismo".
Los organismos autótrofos producen su masa celular y materia orgánica, a partir del dióxido de carbono, que es inorgánico, como única fuente de carbono, usando la luz o sustancias químicas como fuente de energía. Las plantas y otros organismos que usan la fotosíntesis son fotolitoautótrofos; las bacterias que utilizan la oxidación de compuestos inorgánicos como el anhídrido sulfuroso o compuestos ferrosos como producción de energía se llaman quimiolitotróficos.
Los heterótrofos obtienen la energía rompiendo las moléculas que han obtenido de los seres autótrofos por ingestión (animales) o absorción (descomponedores). Por ejemplo, los animales carnívoros dependen de los seres autótrofos porque la energía y la materia obtenidas de sus presas proceden en última instancia de los seres autótrofos (las plantas) que comieron sus presas.
FUNCIONES DE NUTRICION DE LAS CELULAS B.- Descripción del metabolismo celular
METABOLISMO CELULAR
Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio
Reacciones Celulares Básicas.
Los sistemas vivos convierten la energía de una forma en otra a medida que cumplen funciones esenciales de mantenimiento, crecimiento y reproducción. En estas conversiones energéticas, como en todas las demás, parte de la energía útil se pierde en el ambiente en cada paso.
Los seres vivos que sintetizan su propio alimento se conocen como autótrofos. La mayoría de los autótrofos usan la energía del sol para sintetizar su alimento. Las plantas verdes, las algas y algunas bacterias son autótrofos que poseen organelos especializados donde ocurre la síntesis del alimento.
Existen otros seres que no pueden sintetizar su propio alimento. Estos seres se conocen como heterótrofos. Los animales y los hongos son ejemplo de organismos heterótrofos porque dependen de los autótrofos o de otros heterótrofos para su alimentación. Una vez que el alimento es sintetizado o ingerido por un ser vivo, la mayor parte se degrada para producir energía que necesitan las células.
El total de todas las reacciones que ocurren en una célula se conoce como metabolismo. Aquellas reacciones en que sustancias simples se unen para formar sustancias más complejas se llaman reacciones anabólicas. Por ejemplo, las reacciones en las que la célula construye moléculas de proteínas son reacciones anabólicas.
Otras reacciones son las reacciones catabólicas que son aquellas en las cuales sustancias complejas se degradan para convertirse en sustancias más simples. Las proteínas, los polisacáridos y otras moléculas se rompen en moléculas más sencillas mediante reacciones catabólicas.
La glucosa y la fructosa se unen, enlazándose a través de un átomo de oxígeno. Y forman la sacarosa. Esta es una reacción anabólica y como se elimina agua, a esta reacción se le conoce como síntesis por deshidratación
Los polisacáridos y las proteínas se sintetizan por la reacción de síntesis por deshidratación.
El disacárido maltosa al agregarle agua se descompone en dos moléculas de glucosa. Esto forma parte del proceso llamado catabolismo y la reacción específica se le conoce con el nombre de hidrólisis.
Mediante la hidrólisis, se degradan las moléculas grandes que se encuentran en las células vivas. Los hidratos de carbono, los lípidos y las proteínas se degradan por hidrólisis en moléculas más pequeñas y útiles.
EL CONTROL DE LAS REACCIONES CELULARES
Una reacción endergónica es una reacción química que necesita o utiliza energía. En las plantas, se necesita energía de la luz para producir alimento; por lo tanto, la producción de alimento en las plantas es una reacción endergónica.
A una reacción que libera energía se conoce como una reacción exergónica. Muy a menudo, la energía se libera en forma de calor; en las células, las reacciones exergónicas suplen la energía para llevar a cabo las actividades de la célula.
Las células poseen compuestos químicos que controlan las reacciones que ocurren en su interior. La sustancia que controla la velocidad a la que ocurre una reacción química sin que la célula sufra daño alguno ni se destruya se conoce como un catalizador. Las enzimas son proteínas que actúan como catalizadores en las células y hacen posible las reacciones,
Una enzima actúa sobre una sustancia específica llamada sustrato. Recibe su nombre del sustrato sobre el cual actúa. A una parte del nombre del sustrato se le añade el sufijo -asa. Ejemplo: Para los sustratos como la Maltosa, Urea o Lactosa, las enzimas correspondientes serán Maltasa para la maltosa, Ureasa para la urea y Lactasa para la lactosa.
Desnaturalización de las Proteínas. Es la ruptura de enlaces en las moléculas proteicas por efecto de la alta temperatura.
Factores que Afectan.
Los factores que afectan la actividad de una enzima son los factores que afectan a una proteína:
a) La temperatura, b) El pH c) La concentración del sustrato
La desnaturalización de las proteínas se realiza por la exposición a altas temperaturas. Estas rompen algunos enlaces. Esto hace que las enzimas disminuyan o pierdan su actividad.
Fuentes de Energía para las Células
La fuente principal de energía para los seres vivos es la glucosa. Las células usan esta energía para hacer trabajos como halar (las células musculares), transmitir impulsos (las células nerviosas), transportar nutrientes (las células de la raíz vegetal) y sintetizar proteínas y otros compuestos necesarios para la célula.
Cuando las células degradan la glucosa se libera energía, esta liberación se realiza en una serie de pasos controlados por enzimas. La mayor parte de le energía que se libera se almacena en otro compuesto químico: el trifosfato de adenosina o ATP.
La figura ilustra la estructura de la molécula compleja de ATP, la adenosina tiene dos partes: adenina y ribosa. La Adenosina va unida a tres grupos fosfato (cada uno posee un átomo de fósforo unido a cuatro átomos de oxígeno). Cuando una enzima separa el grupo fosfato terminal de una molécula de ATP, se libera una gran cantidad de energía que la célula utiliza. La molécula resultante es el difosfato de adenosina o ADP.
La molécula de ATP puede representarse como A-P~P~P, (la A representa la adenosina y P representa el fosfato).
En las células vivas, la glucosa se degrada y se libera energía, parte de esta energía se usa para sintetizar ATP. En la mayoría de las células, este proceso necesita oxigeno, la degradación de la glucosa mediante el uso del oxígeno o alguna otra sustancia inorgánica, se conoce como respiración celular. La respiración celular que necesita oxígeno se llama respiración aeróbica.
En la respiración aeróbica, la degradación de glucosa comprende una serie de reacciones. Sin embargo, la reacción general se puede representar con la siguiente ecuación.
Enzimas
C6H12O6 + 6O2 -------à 6CO2 + 6H2O + ATP
(glucosa) (oxígeno) (bióxido (agua) trifosfato de adenosina
La respiración anaeróbica se da en dos etapas:
La glucólisis y el Ciclo del Ácido Cítrico o Ciclo de Krebs
Glucólisis. En la primera etapa, la glucosa se parte en dos moléculas de ácido pirúvico, el ácido pirúvico es un compuesto de tres carbonos, en esta reacción, se usan dos moléculas de ATP, pero se producen cuatro moléculas de ATP. El NAD se transforma en NADH. Producción neta de 2 ATP
La glucólisis ocurre en el citoplasma de la célula.
Ciclo de Krebs
Cada molécula de ácido pirúvico se convierte en Acetil Coenzima A. Compuesto de dos carbonos.
Que se une aun compuesto de cuatro carbonos hasta la degradación total de glucosa en CO2 y agua.
La cadena respiratoria
Es otra forma de degradar la glucosa utilizando sustancias orgánicas como aceptores finales de electrones.
Se puede dar en dos tipos:
La fermentación alcohólica en ella se obtiene alcohol etílico, bióxido de carbono y 2 ATP
La fermentación láctica. En ella se obtiene ácido láctico + 2ATP
D.- Descripción de la fotosíntesis
fotosíntesis (del griego antiguo φώτο [foto], "luz", y σύνθεσις [síntesis], "unión") es la conversión de energía luminosa en energía química estable, siendo el adenosín trifosfato (ATP) la primera molécula en la que queda almacenada esa energía química. Con posterioridad, el ATP se usa para sintetizar moléculas orgánicas de mayor estabilidad. Además, se debe de tener en cuenta que la vida en nuestro planeta se mantiene fundamentalmente gracias a la fotosíntesis que realizan las algas, en el medio acuático, y las plantas, en el medio terrestre, que tienen la capacidad de sintetizar materia orgánica (imprescindible para la constitución de los seres vivos) partiendo de la luz y la materia inorgánica. De hecho, cada año los organismos fotosintetizadores fijan en forma de materia orgánica en torno a 100.000 millones de toneladas de carbono.[1] [2]
El cloroplasto
Artículo principal: Cloroplasto
Los cloroplastos son unos orgánulos característicos de las células de tipo vegetal que contienen clorofila, hecho que permite que éstos puedan llevar a cabo la fotosíntesis. Es por ello por lo que se consideran orgánulos productores de energía.
Desarrollo
Esquema ilustrativo de las clases de plastos.
En las células meristemáticas se encuentran proplastos, que no tienen ni membrana interna, ni clorofila, ni ciertos enzimas requeridos para llevar a cabo la fotosíntesis. En angiospermas y gimnospermas el desarrollo de los cloroplastos es desencadenado por la luz, puesto que bajo iluminación se generan los enzimas en el interior del proplasto o se extraen del citosol, aparecen los pigmentos encargados de la absorción lumínica y se producen con gran rapidez las membranas, dando lugar a los grana y las lamelas del estroma.[14]
A pesar de que las semillas suelen germinar en el suelo sin luz, los cloroplastos son una clase de orgánulos que exclusivamente se desarrollan cuando el vástago queda expuesto a la luz. Si la semilla germina en ausencia de luz, los proplastos se diferencian en etioplastos, que albergan una agrupación tubular semicristalina de membrana llamada cuerpo prolamelar. En vez de clorofila, estos etioplastos tienen un pigmento de color verde-amarillento que constituye el precursor de la misma: es la denominada protoclorofila.[14]
Después de estar por un pequeño intervalo de tiempo expuestos a la luz, los etioplastos se diferencian transformándose los cuerpos prolamelares en tilacoides y lamelas del estroma, y la protoclorofila, en clorofila. El mantenimiento de la estructura de los cloroplastos está directamente vinculada a la luz, de modo que si en algún momento éstos pasan a estar en penumbra continuada puede desencadenarse que los cloroplastos vuelvan a convertirse en etioplastos.[14]
Además, los cloroplastos pueden convertirse en cromoplastos, como sucede en las hojas durante el otoño o a lo largo del proceso de maduración de los frutos (proceso reversible en determinadas ocasiones). Asimismo, los amiloplastos (contenedores de almidón) pueden transformarse en cloroplastos, hecho que explica el fenómeno por el cual las raíces adquieren tonos verdosos al estar en contacto con la luz solar.[14]
Estructura y abundancia
Se distinguen por ser unas estructuras polimorfas y de color verde, siendo esto último debido a la presencia del pigmento clorofila en su interior. Además, presentan una envoltura formada por una doble membrana que carece de clorofila y colesterol: una membrana plastidial externa y una membrana plastidial interna.
En las plantas superiores, la forma que con mayor frecuencia presentan los cloroplastos es la de disco lenticular, aunque también existen algunos de aspecto ovoidal o esférico. Con respecto a su número, se puede decir que en torno a cuarenta y cincuenta cloroplastos coexisten, de media, en una célula de una hoja; y existen unos 500.000 cloroplastos por milímetro cuadrado de superficie foliar. No sucede lo mismo entre las algas, pues los cloroplastos de éstas no se encuentran tan determinados ni en número ni en forma. Por ejemplo, en el alga Spirogyra únicamente existen dos cloroplastos con forma de cinta en espiral, y en el alga Chlamydomonas, sólo hay uno de grandes dimensiones.
En el interior y delimitado por una membrana plastidial interna, se ubica una cámara que alberga un medio interno con un elevado número de componentes (ADN plastidial, circular y de doble hélice, plastorribosomas, enzimas e inclusiones de granos de almidón y las inclusiones lipídicas); es lo que se conoce por el nombre de estroma. Inmerso en el se encuentran una gran cantidad de sáculos denominados tilacoides, que contienen pigmentos fotosintéticos en su membrana tilacoidal (cuya cavidad interior se llama lumen o espacio tilacoidal). Los tilacoides pueden encontrarse repartidos por todo el estroma (tilacoides del estroma), o bien, pueden ser pequeños, tener forma discoidal y encontrarse apilados originando unos montones, denominados grana (tilacoides de grana). Es en la membrana de los grana donde se ubican los sistemas enzimáticos encargados de captar la energía luminosa, llevar a cabo el transporte de electrones y sintetizar ATP.
Función
La más importante función realizada por los cloroplastos es la fotosíntesis, proceso en la que la materia inorgánica es transformada en materia orgánica (fase oscura) empleando la energía bioquímica (ATP) obtenida por medio de la energía solar, a través de los pigmentos fotosintéticos y la cadena transportadora de electrones de los tilacoides (fase luminosa). Otras vías metabólicas de vital importancia que se realizan en el estroma, son la biosíntesis de proteínas y la replicación del ADN.
Fase fotoquímica
Artículo principal: Fase luminosa
La energía luminosa que absorbe la clorofila se transmite a los electrones externos de la molécula, los cuales escapan de la misma y producen una especie de corriente eléctrica en el interior del cloroplasto al incorporarse a la cadena de transporte de electrones. Esta energía puede ser empleada en la síntesis de ATP mediante la fotofosforilación, y en la síntesis de NADPH. Ambos compuestos son necesarios para la siguiente fase o Ciclo de Calvin, donde se sintetizarán los primeros azúcares que servirán para la producción de sacarosa y almidón. Los electrones que ceden las clorofilas son repuestos mediante la oxidación del H2O, proceso en el cual se genera el O2 que las plantas liberan a la atmósfera.
Existen dos variantes de fotofosforilación: acíclica y cíclica, según el tránsito que sigan los electrones a través de los fotosistemas. Las consecuencias de seguir un tipo u otro estriban principalmente en la producción o no de NADPH y en la liberación o no de O2.
Fotofosforilación acíclica
El proceso de la fase luminosa, supuesto para dos electrones, es el siguiente: Los fotones inciden sobre el fotosistema II, excitando y liberando dos electrones, que pasan al primer aceptor de electrones, la feofitina. Los electrones los repone el primer dador de electrones, el dador Z, con los electrones procedentes de la fotólisis del agua en el interior del tilacoide (la molécula de agua se divide en 2H+ + 2e- + 1/2O2). Los protones de la fotólisis se acumulan en el interior del tilacoide, y el oxígeno es liberado.
Los electrones pasan a una cadena de transporte de electrones, que invertirá su energía liberada en la síntesis de ATP. ¿Cómo? La teoría quimioosmótica nos lo explica de la siguiente manera: los electrones son cedidos a las plastoquinonas, las cuales captan también dos protones del estroma. Los electrones y los protones pasan al complejo de citocromos bf, que bombea los protones al interior del tilacoide. Se consigue así una gran concentración de protones en el tilacoide (entre éstos y los resultantes de la fotólisis del agua), que se compensa regresando al estroma a través de las proteínas ATP-sintasas, que invierten la energía del paso de los protones en sintetizar ATP. La síntesis de ATP en la fase fotoquímica se denomina fotofosforilación.
Los electrones de los citocromos pasan a la plastocianina, que los cede a su vez al fotosistema I. Con la energía de la luz, los electrones son de nuevo liberados y captados por el aceptor A0. De ahí pasan a través de una serie de filoquinonas hasta llegar a la ferredoxina. Ésta molécula los cede a la enzima NADP+-reductasa, que capta también dos protones del estroma. Con los dos protones y los dos electrones, reduce un NADP+ en NADPH + H+.
El balance final es: por cada molécula de agua (y por cada cuatro fotones) se forman media molécula de oxígeno, 1,3 moléculas de ATP, y un NADPH + H+.
Fase luminosa cíclica
En la fase luminosa o fotoquímica cíclica interviene de forma exclusiva el fotosistema I, generándose un flujo o ciclo de electrones que en cada vuelta da lugar a síntesis de ATP. Al no intervenir el fotosistema II, no hay fotólisis del agua y, por ende, no se produce la reducción del NADP+ ni se desprende oxígeno. Únicamente se obtiene ATP.
El objetivo que tiene la fase cíclica tratada es el de subsanar el déficit de ATP obtenido en la fase acíclica para poder afrontar la fase oscura posterior.
Cuando se ilumina con luz de longitud de onda superior a 680 nm (lo que se llama rojo lejano) sólo se produce el proceso cíclico. Al incidir los fotones sobre el fotosistema I, la clorofila P700 libera los electrones que llegan a la ferredoxina, la cual los cede a un citocromo bf y éste a la plastoquinona (PQ), que capta dos protones y pasa a (PQH2). La plastoquinona reducida cede los dos electrones al citocromo bf, seguidamente a la plastocianina y de vuelta al fotosistema I. Este flujo de electrones produce una diferencia de potencial en el tilacoide que hace que entren protones al interior. Posteriormente saldrán al estroma por la ATP-sintetasa fosforilando ADP en ATP. De forma que únicamente se producirá ATP en esta fase.
Sirve para compensar el hecho de que en la fotofosforilación acíclica no se genera suficiente ATP para la fase oscura.
La fase luminosa cíclica puede producirse al mismo tiempo que la acíclica.
Fase oscura o biosintética
Artículo principal: Ciclo de Calvin
En la fase oscura, que tiene lugar en la matriz o estroma de los cloroplastos, la energía en forma de ATP y el NADPH que se obtuvo en la fase fotoquímica se usa para sintetizar materia orgánica por medio de sustancias inorgánicas. La fuente de carbono empleada es el dióxido de carbono, mientras que como fuente de nitrógeno se utilizan los nitratos y nitritos, y como fuente de azufre, los sulfatos.
En primer lugar se produce la fijación del dióxido de carbono. En el estroma del cloroplasto, el dióxido de carbono atmosférico se une a la pentosa ribulosa-1,5-bisfosfato, gracias a la enzima RuBisCO, y origina un compuesto inestable de seis carbonos, que se descompone en dos moléculas de ácido-3-fosfoglicérico. Se trata de moléculas constituidas por tres átomos de carbono, por lo que las plantas que siguen esta vía metabólica se llaman C3. Si bien, muchas especies vegetales tropicales que crecen en zonas desérticas, modifican el ciclo de tal manera que el primer producto fotosintético no es una molécula de tres átomos de carbono, sino de cuatro (un ácido dicarboxílico), constituyéndose un método alternativo denominado vía de la C4, al igual que este tipo de plantas.
Con posterioridad se produce la reducción del dióxido de carbono fijado. Por medio del consumo de ATP y del NADPH obtenidos en la fase luminosa, el ácido 3-fosfoglicérico se reduce a gliceraldehído 3-fosfato. Éste puede seguir dos vías, consistiendo la primera de ellas en regenerar la ribulosa 1-5-difosfato (la mayor parte del producto se invierte en esto) o bien, servir para realizar otro tipo de biosíntesis: el que se queda en el estroma del cloroplasto comienza la síntesis de aminoácidos, ácidos grasos y almidón. El que pasa al citosol origina la glucosa y la fructosa, que al combinarse generan la sacarosa (azúcar característico de la savia) mediante un proceso parecido a la glucólisis en sentido inverso.
La regeneración de la ribulosa-1,5-difosfato se lleva a cabo a partir del gliceraldehído 3-fosfato, por medio de un proceso complejo donde se suceden compuestos de cuatro, cinco y siete carbonos, semejante a ciclo de las pentosas fosfato en sentido inverso (en el ciclo de Calvin, por cada molécula de dióxido de carbono que se incorpora se requieren dos de NADPH y tres de ATP).
En un primer momento, los iones nitrato se reducen a iones nitrito por la enzima nitrato reductasa, requiriéndose el consumo de un NADPH. Más tarde, los nitritos se reducen a amoníaco gracias, nuevamente, a la enzima nitrato reductasa y volviéndose a gastar un NADPH. Finalmente, el amoníaco que se ha obtenido y que es nocivo para la planta, es captado con rapidez por el ácido α-cetoglutárico originándose el ácido glutámico (reacción catalizada por la enzima glutamato sintetasa), a partir del cual los átomos de nitrógeno pueden pasar en forma de grupo amino a otros cetoácidos y producir nuevos aminoácidos.
Sin embargo, algunas bacterias pertenecientes a lo géneros Azotobacter, Clostridium y Rhizobium y determinadas cianobacterias (Anabaena y Nostoc) tienen la capacidad de aprovechar el nitrógeno atmosférico, transformando las moléculas de este elemento químico en amoníaco mediante el proceso llamada | |
© 2024 biodiversidad 1032925 |