biodiversidad

Si buscas hosting web, dominios web, correos empresariales o crear páginas web gratis, ingresa a PaginaMX
Por otro lado, si buscas crear códigos qr online ingresa al Creador de Códigos QR más potente que existe


 Pueden darse tres tipos de daños fortuitos en el ADN:

La despurinización consiste en la ruptura del enlace glucosídico entre la base nitrogenada y el azúcar al que está unida con pérdida de una adenina o de una guanina . Como consecuencia aparecen sitios apurínicas (o sea, sin bases púricas). Existe un sistema de reparación de este tipo de lesiones en el ADN. Este tipo de lesión es la más recurrente o frecuente: se estima que se produce una pérdida de 10.000 cada 20 horas a 37 °C.

La desaminación consiste en la pérdida de grupos amino. La citosina por desaminación se convierte en uracilo y el uracilo empareja con adenina produciéndose transiciones: GC→AT. El uracilo no forma parte del ADN, existiéndo un enzima llamada glucosidasa de uracilo encargada de detectar la presencia de este tipo de base en el ADN y retirarlo. Al retirar el uracilo se produce una sede o sitio apirimidínica. La 5-Metil-Citosina (5-Me-C) por desaminación se convierte en Timina (T). La Timina (T) es una base normal en el ADN y no se retira, por tanto estos errores no se reparan. Este tipo de mutación también genera transiciones.

Los daños oxidativos en el ADN. El metabolismo aeróbico produce radicales superoxido O2, peróxido de hidrógeno H2O2 e hidroxilo. Estos radicales producen daños en el ADN, y una de las principales alteraciones que originan es la transformación de la guanina en 8-oxo-7,8-dihidro-desoxiguanina que aparea con la Adenina. La 8-oxo-7,8-dihidro-desoxiguanina recibe el nombre abreviado de 8-oxo-G. Esta alteración del ADN produce transversiones: GC→TA. [8]

La secuencia Alu es la más abundante en el genoma humano, existiendo 750.000 copias dispersas por el genoma, aproximadamente existe una copia cada 4000 pb. Esta secuencia posee un contenido relativamente alto en (G+C) y presenta una elevada homología (70-80%) con la secuencia B1 de ratón. Se la denomina secuencia Alu por poseer en su interior una diana para la endonucleasa de restricción Alu. Las secuencias Alu humanas tienen alrededor de 280 pb y están flanqueadas por repeticiones directas cortas (6-18 pb). Una secuencia típica Alu es un dímero repetido en tandem, la unidad que se repite tiene un tamaño aproximado de 120 pb y va seguida de una corta secuencia rica en pares A-T. Sin embargo, existe una asimetría en las unidades repetidas, de manera que la segunda unidad contiene una secuencia de 32 pb ausente en la primera. Las unidades repetidas de la secuencia Alu muestran un elevado parecido con la secuencia del ARN 7SL, un componente que juega un papel importante en el transporte de las proteínas a través de la membrana del retículo endoplasmático.

La mayoría de las mutaciones son recesivas debido a que la mayor parte de los genes codifica para enzimas. Si un gen es inactivado la reducción en el nivel de actividad de la enzima puede no ser superior al 50% ya que el nivel de transcripción del gen remanente puede aumentarse por regulación en respuesta a cualquier aumento en a concentración del sustrato. Asimismo, la proteína en si misma puede estar sujeta a regulación (por fosforilación, por ejemplo) de tal forma que su actividad pueda ser aumentada para compensar cualquier falta en el número de moléculas. En cualquier caso, a menos que la enzima controle la velocidad del paso limitante en la ruta bioquímica, una reducción en la cantidad de producto puede no importar. l fenotipo. Esta enfermedad es causada por mutaciones en el gen que codifica para la enzima fenilanina hidroxilasa, la cual convierte el aminoácido fenilalanina a tirosina. Si un individuo es homocigota para alelos que eliminen completamente cualquier actividad de esta enzima, la fenilalanina no podrá ser metabolizada y aumentará sus niveles en sangre hasta un punto en el cual comienza a ser dañina para el cerebro en desarrollo. Es de rutina determinar esta condición en los recién nacidos mediante el análisis de una pequeña gota de sangre (Test Guthrie). Este estudio ha revelado que existen pocas personas con una condición conocida como Hiperfenilalaninemia Benigna. Estos individuos tienen niveles moderadamente altos fenilalanina en sangre. Sus niveles de fenilalanina hidroxilasa constituyen aproximadamente el 5% del normal. A pesar de esto, son aparentemente perfectamente saludables y no sufren de las anormailidades cerebrales causadas por la falta total de la actividad enzimática. En este caso, la cantidad de producto de un gen no es suficiente para que el metabolismo sea el normal. Quizás la enzima producida sea la responsable de regular la velocidad del paso limitante en una reacción de una ruta metabólica. La telangiectasia hemorrágica hereditaria es una displasia vascular autosómica dominante que lleva a telangiectasias y malformaciones arteriovenosas de la piel, mucosas y vísceras, provocando ocasionalmente la muerte por sangrados incontrolados. Está causada por una mutación en el gen ENG, que codifica para la endoglina, proteína receptora del factor beta transformante de crecimiento (TGF-beta). Quizás el TGF-beta no sea capaz de ejercer un efecto suficiente en las células cuando sólo está presente la mitad de la cantidad normal del receptor.[9] [10] [11]

Mutación y evolución [editar]

Las mutaciones son la materia prima de la evolución. La evolución tiene lugar cuando una nueva versión de un gen, que originalmente surge por una mutación, aumenta su frecuencia y se extiende a la especie gracias a la selección natural o a tendencias genéticas aleatorias (fluctuaciones casuales en la frecuencia de los genes). Antes se pensaba que las mutaciones dirigían la evolución, pero en la actualidad se cree que la principal fuerza directora de la evolución es la selección natural, no las mutaciones. No obstante, sin mutaciones las especies no evolucionarían.

La selección natural actúa para eliminar las mutaciones desventajosas; por tanto, está actuando continuamente para proteger a la especie de la decadencia mutacional. Sin embargo, la mutación desventajosa surge a la misma velocidad a la que la selección natural la elimina, por lo que las poblaciones nunca están completamente limpias de formas mutantes desventajosas de los genes. Esas mutaciones que no resultan ventajosas pueden ser el origen de enfermedades genéticas que pueden transmitirse a la siguiente generación.

La selección natural no actúa sobre las mutaciones neutrales, pero las mutaciones neutrales pueden cambiar de frecuencia por procesos aleatorios. Existen controversias sobre el porcentaje de mutaciones que son neutrales, pero generalmente se acepta que, dentro de las mutaciones no neutras, las mutaciones desventajosas son mucho más frecuentes que las mutaciones ventajosas. Por tanto, la selección natural suele actuar para reducir el porcentaje de mutaciones al mínimo posible; de hecho, el porcentaje de mutaciones observado es bastante bajo.

Mutación y cáncer [editar]

El cáncer está causado por alteraciones en oncogenes, genes supresores de tumores y/o genes de micro ARN. Un solo cambio genético es usualmente insuficiente para que se desarrolle un tumor maligno. La mayor parte de la evidencia indica que tal desarrollo involucra un proceso de varios pasos secuenciales en los cuales ocurren alteraciones en varios, frecuentemente muchos, de estos genes.[16] Un oncogén es un gen que, cuando es desregulado, participa en el inicio y desarrollo del cancer. Las mutaciones génicas que dan como resultado la activación de los oncogenes incrementan la posibilidad de que una célula normal se convierta en una célula tumoral. Desde la década de los '70 se han identificado docenas de oncogenes en los seres humanos. Los oncogenes, al menos en sentido figurado, son los perpetuos antagonitas de los genes supresores tumorales, los cuales actúan previniendo el daño del ADN y mantienen las funciones celulares bajo un equilibrado control. Existe mucha evidencia que apoya la noción de que la pérdida o inactivación por mutaciones puntuales de los genes supresores de tumores puede llevar a una célula a transformarse en cancerosa.[17] Los oncogenes se originan a partir de mutaciones en genes normales, llamados proto-oncogenes. Los proto-oncogenes usualmente codifican para proteínas que ayudan a regular el ciclo celular o la diferenciación celular y se hallan frecuentemente involucrados en la transducción de señal y en la ejecución de señales mitogénicas.<.[18] Se ha descubierto, por otro lado, que los micro ARNs (pequeños ARNs

de 20 a 25 nucléotidos de longitud) pueden controlar la expresión de los oncogenes regulándolos negativamente.[19] Por esa razón, las mutaciones en los micro ARNs pueden llevar a la activación de los oncogenes.[20]

Origen y evolución temprana de la vida.

Se denomina creacionismo al conjunto de creencias, inspirada en doctrinas religiosas, según la cual la Tierra y cada ser vivo que existe actualmente proviene de un acto de creación por uno o varios seres divinos, cuyo acto de creación fue llevado a cabo de acuerdo con un propósito divino.[1]

Por extensión a esa definición, el adjetivo «creacionista» se ha aplicado a cualquier opinión o doctrina filosófica o religiosa que defienda una explicación del origen del mundo basada en uno o más actos de creación por un Dios personal, como lo hacen, por ejemplo, las religiones del Libro. Por ello, igualmente se denomina creacionismo a los movimientos pseudo-científicos y religiosos que militan en contra del hecho evolutivo.[2]

El creacionismo se destaca principalmente por los "movimientos anti-evolucionistas", tales como el diseño inteligente,[3] cuyos partidarios buscan obstaculizar o impedir la enseñanza de la evolución biológica en las escuelas y universidades. Según estos movimientos creacionistas, los contenidos educativos sobre biología evolutiva han de sustituirse, o al menos contrarrestarse, con sus creencias y mitos religiosos o con la creación de los seres vivos por parte de un ser inteligente. En contraste con esta posición, la comunidad científica sostiene la conveniencia de diferenciar entre lo natural y lo sobrenatural, de forma que no se obstaculice el desarrollo de aquellos elementos que hacen al bienestar de los seres humanos.[4] Las cosmogonías y mitos de caracter creacionista han estado y permanecen presentes en muy distintos sistemas de creencias, tanto monoteístas, como politeístas o animistas. El movimiento creacionista políticamente más activo y conocido es de origen cristiano protestante y está implantado, principalmente, en los Estados Unidos

La teoría de la generación espontánea, también conocida como autogénesis es una antigua teoría biológica de abiogénesis que sostenía que podía surgir vida compleja, animal y vegetal, de forma espontánea a partir de la materia inerte. Para referirse a la "generación espontánea", también se utiliza el término abiogénesis, acuñado por Thomas Huxley en 1870, para ser usado originalmente para referirse a esta teoría, en oposición al origen de la generación por otros organismos vivos (biogénesis). La generación espontánea antiguamente era una creencia profundamente arraigada descrita ya por Aristóteles. La observación superficial indicaba que surgían gusanos del fango, moscas de la carne podrida, organismos de los lugares húmedos, etc. Así, la idea de que la vida se estaba originando continuamente a partir de esos restos de materia orgánica se estableció como lugar común en la ciencia. Hoy en día la comunidad científica considera que esta teoría está plenamente refutada.

La autogénesis se sustentaba en procesos como la putrefacción. Es así que de un trozo de carne podían generarse larvas de mosca. Precisamente, esta premisa era como un fin de una observación superficial, ya que -según los defensores de esta corriente- no era posible que, sin que ningún organismo visible se acercara al trozo de carne aparecieran las larvas, a menos que sobre ésta actuara un principio vital generador de vida.

Facciones contra la generación espontánea

Diversos experimentos realizados entre los siglos XVII y XVIII revelaron que los gusanos o las moscas, por ejemplo, aparecían si había huevos de estos animales. Aun así se siguió pensando que los microorganismos podían surgir de forma espontánea sobre los llamados caldos nutritivos

Panspermia (del griego παν- [pan, todo] y σπερμα [sperma, semilla]) es la hipótesis que sugiere que las Bacterias o la esencia de la vida prevalecen diseminadas por todo el universo y que la vida comenzó en la Tierra gracias a la llegada de tales semillas a nuestro planeta.[1] [2] Estas ideas tienen su origen en algunas de las consideraciones del filósofo griego Anaxágoras. . El término fue acuñado por el biólogo alemán Hermann Ritcher en 1865. Fue en 1908 cuando el químico sueco Svante August Arrhenius usó la palabra panspermia para explicar el comienzo de la vida en la Tierra. El astrónomo Fred Hoyle también apoyó dicha hipótesis. No fue sino hasta 1903 cuando el químico —y ganador del Premio NobelSvante Arrhenius popularizó el concepto de la vida originándose en el espacio exterior.[3]

La Evolución Química

La evolución química es una evolución basada en procesos químicos, no biológicos, que comprenden el cambiar compuestos inorgánicos simples a compuestos orgánicos complejos. Según Oparin, como resultado de esto procesos, se pudieron producir dos características importantes de los organismos vivos. Primero, lo que vive se compone mayormente de moléculas orgánicas complejas. La evolución química tuvo que haber producido estas moléculas, a partir de bloques de construcción más pequeños. Segundo, los sistemas de moléculas orgánicas en los organismos están es una cápsula o rodeados como unidades separadas. Estas unidades son las células que forman todo lo viviente. Para que surgiera la vida, también tenía que ocurrir esta encapsulación de los materiales. De acuerdo conla hipótesis de Oparin, una gran cantidad de reacciones químicas ocurría entre los ingredientes de los mares antiguos. Durante millones de años probablemente aparecieran los aminoácidos y los nuclótidos que forman el DNA y el RNA entre las moléculas producidas mediante estas reacciones. A veces, los científicos llaman sopa primordial a la solución que componía los océanos primitivos, debido a la presencia de estas moléculas. Sin embargo, supongamos que, en una de los billones de reacciones, se unieran algunos aminoácidos para formar una proteína que pudiera funcionar como una enzima. Esta enzima, a su vez, pudo haber unido algunos otros aminoácidos. En este caso, podría haber varias cadenas de aminoácidos y, tal vez, proteínas completas. Estos raros accidentes también pudieron producir pedacitos cortos de ácidos nucleicos con la habilidad para replicarse a sí mismos. En cada uno de estos casos, la aparición de una molécula orgánica podía llevar a la producción de muchas más. La formación de moléculas orgánicas complejas, a partir de bloque de construccón más pequeños, debe haber necesitado energía. Oparin surgirió que había varias fuentes de energía posibles: la energía eléctrica de los relámpagos, la energía radiante del Sol, la energía proveniente de la desintegración de las sustancias radiactivas. Oparin describió forma en que pudieron formarse algunos compuestos complejos. También describió cómo pudieron ser separados del ambiente por alguna membrana los compuestos originales de la vida. Señaló que las mezclas de compuestos orgánicos pueden formar agrupaciones que el llamó coacervados. Un coacervado es un grupo de gotas microscópicas que se froma por atracció entre moléculas. De una mezcla de proteínas y azúcar en agua, se pueden formar coacervados. Las gotas en el interior son moléculas de proteínas. Las moléculas de agua forman la capa exterior de estas gotas. Esta capa actúa, más o menos, como una membrana celular. Los coacervados pueden intercambiar materiales con su ambiente, a través de esta capa limitante, en la misma forma que lo hace una célula. Para Oparin, estas gotas sugerían la forma de una célula. Igual que la célula, cda gota puede considerarse como distinta y separada de las demás. Los estudios acerca de la hipótesis de Oparin han demostrado que ese tipo de moléculas que encontramos en los organismos vivos pudo haberse formado temprao en la historia de la Tierra. También han demostrado que grupos de moléculas pudieron haber sido encapsulados. Estos grupos de moléculas encapsuladas - que contienen agua, proteínas, azúcares y ácidos nucleicos - pudieron haber crecido obteniendo materiales del ambiente. Al tomar materiales del ambiente, estas moléculas pudieron haberse duplicado. Finalmente, las gotas que se desprendían pudieron haber formado copias exactas del grupo completo de moléculas encapsuladas.

 

 

© 2024 biodiversidad

658437